AI算力研究框架(国海证券)

郭太侠1年前 (2023-06-20)AIGC304

服务器:AI算力的重要载体

服务器通常是指那些具有较高计算能力,能够提供给多个用户使用的计算机。服务器与PC机的不同点很多,例如PC机在 一个时刻通常只为一个用户服务。服务器与主机不同,主机是通过终端给用户使用的,服务器是通过网络给客户端用户使 用的,所以除了要拥有终端设备,还要利用网络才能使用服务器电脑,但用户连上线后就能使用服务器上的特定服务了。

AI服务器是一种能够提供人工智能(AI)计算的服务器。它既可以用来支持本地应用程序和网页,也可以为云和本地服务 器提供复杂的AI模型和服务。AI服务器有助于为各种实时AI应用提供实时计算服务。AI服务器按应用场景可分为训练和推 理两种,其中训练对芯片算力要求更高,推理对算力的要求偏低。

GPU:AI算力的核心

AI芯片是算力的核心。AI芯片也被称为AI加速器或计算卡,即专门用于处理人工智能应用中的大量计算任务的模 块(其他非计算任务仍由CPU负责)。伴随数据海量增长,算法模型趋向复杂,处理对象异构,计算性能要求高, AI 芯片在人工智能的算法和应用上做针对性设计,可高效处理人工智能应用中日渐多样繁杂的计算任务。

GPU是目前最广泛应用的AI芯片。AI芯片主要包括图形处理器(GPU)、现场可编程门阵列(FPGA)、专用 集成电路(ASIC)、神经拟态芯片(NPU)等。GPU属于通用型芯片,ASIC属于专用型芯片,而FPGA则是 介于两者之间的半定制化芯片。2022年,我国GPU服务器占AI服务器的89%。

CUDA是英伟达2007年推出的一种并行计算平台和应用程序编程接口(API),允许软件使用某些类型的GPU进行通用计 算机处理。CUDA与 NVIDIA GPU 无缝协作,加速跨多个领域的应用程序开发和部署。 目前,超过一百万的开发人员正在使用 CUDA-X,它提供了提高生产力的能力,同时受益于持续的应用程序性能。

来源:国海证券

报告内容节选如下:



1.png